AVERAGING AND INITIAL LAYER ANALYSIS IN PASSIVE TRANSPORT

Harsha Hutridurga

Imperial College London

19 June 2019 - Recent Advances in Homogenisation theory

A 3 5 A 3 5 A

э

SOME HISTORY

- & G.I. TAYLOR posed an interesting question.
- \clubsuit Take a tube filled with fluid.
- \clubsuit Study <u>spreading</u> of dissolved solutes inside the tube.
- Interplay between molecular diffusion and advection

$$\partial_t c + \mathbf{b} \cdot \nabla c - d\Delta c = 0.$$

- Shearing advective field:
 Poiseuille flow in a tube.
- Empirical formula for
 Effective diffusion.

[Ref.]G.I.TAYLOR, Proc. Roy. Soc. Lond. A Math., Vol 219 (1953).[Ref.]G.K.BATCHELOR, The life and legacy of G.I.Taylor, (1996).

MOTIVATION

- & Quantity of interest: certain CONCENTRATION FIELD.
- Evolving under the influence of
 - advection by an incompressible field.
 - molecular diffusion.
- Physical quantity immersed in a fluid flow
 - ▶ temperature (heat).
 - concentration of some solute.
- & Chlorophyll moved around in ocean.
- \clubsuit Heat evolving on the surface of the ocean.

[Ref.] EARTH OBSERVATORY WEBPAGE OF NASA FOR CERTAIN GLOBAL MAPS

https://earthobservatory.nasa.gov

• • • • • • • • • •

3 / 46

[Media.] TEMPERATURE AND CHLOROPHYLL MAPS (2002-2016)

INTRICATE CONNECTIONS

 \clubsuit Other scientific disciplines such as

- Geophysics: oceanography
- ▶ Engineering: chemical engineering
- Biology: motor proteins
- Particular applications:
 - weak heat fluctuations in fluids
 - dyes used to visualising flow patterns
 - pollutants dispersing in the environment
 - ▶ gas exchange in the lungs
 - blood circulation

[Ref.] A.MAJDA, P.KRAMER, Phy. Rep. (1999).

INTERESTING SERIES OF LECTURES ON YOUTUBE

[Ref.] JEAN-LUC THIFEAULT, Stirring and Mixing, Geophysical Phenomena, ICTS (2016).

ADVECTION-DIFFUSION EQUATION

Initial-boundary value problem for the scalar unknown $u^{\varepsilon}(t,x)$

$$\partial_t u^{\varepsilon} + \frac{1}{\varepsilon} \mathbf{b} \cdot \nabla u^{\varepsilon} - \Delta u^{\varepsilon} = 0 \qquad \text{in } \mathbb{R}_+ \times \Omega,$$

$$u^{\varepsilon}(0,x) = u^{\mathrm{in}}(x)$$
 in Ω ,

$$\nabla u^{\varepsilon} \cdot \mathbf{n}(x) = 0 \qquad \qquad \text{on } \mathbb{R}_+ \times \partial \Omega.$$

𝔅 ≥ 0 is a parameter (to regulate strength of advective field).𝔅 Molecular diffusion weak compared to the strength of advection.

PASSIVE SCALAR

- Advective field $\mathbf{b}(x)$ is a datum.
- **Neglect buoyancy**: no feedback.

ADVECTIVE FIELD

Advective field $\mathbf{b}(x): \Omega \to \mathbb{R}^d$ is such that

& It is **prescribed** – We are **not** solving fundamental fluid equation.

Let is incompressible (divergence-free, solenoidal), i.e.,

$$\nabla \cdot \mathbf{b}(x) = 0$$
 for a.e. $x \in \Omega$.

Let has zero normal flux at the boundary, i.e.,

$$\mathbf{b}(x) \cdot \mathbf{n}(x) = 0$$
 for a.e. $x \in \partial \Omega$.

& It is as **smooth** as the computations demand.

ADDITIONAL COMMENT

* In case of a **feedback**: coupled system for $u^{\varepsilon}(t, x)$ and $\mathbf{b}(x)$. RAYLEIGH-BÉNARD convection system – more complicated.

A SHORT DETOUR

Consider two-dimensional incompressible Navier-Stokes equations

$$\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \, \mathbf{u} + \nabla p = \varepsilon \Delta \mathbf{u}$$

 $\nabla \cdot \mathbf{u} = 0$

Introduce the vorticity $\omega := \nabla \times \mathbf{u}$ – satisfies the coupled system

$$\begin{aligned} \partial_t \omega + \mathbf{u} \cdot \nabla \omega &= \varepsilon \Delta \omega \\ \mathbf{u} &= \nabla^{\perp} \Psi = (-\partial_{x_2} \Psi, \partial_{x_1} \Psi) \\ -\Delta \Psi &= \omega \end{aligned}$$

Long-time scaling yields

$$\partial_t \omega + \frac{1}{\varepsilon} \mathbf{u} \cdot \nabla \omega = \Delta \omega$$

♣ This is a long term goal...

INTERESTING QUESTIONS

$$\partial_t u^\varepsilon + \frac{1}{\varepsilon} \mathbf{b} \cdot \nabla u^\varepsilon - \Delta u^\varepsilon = 0$$

Relaxation to equilibrium

- In the evolution for $u^{\varepsilon}(t, x)$ how long does it take to equilibrate?
- ▶ If we wait long enough, will we reach an **uniform** temperature?
- Is the **rate** of convergence **uniform** in ε ?
- ► Are there **special** advective fields which result in **quicker** equilibration?

Strong advection limit

- Does there exist a **limit point** for the sequence $\{u^{\varepsilon}(t, x)\}$?
- If $\lim_{\varepsilon \to 0} u^{\varepsilon} = \overline{u}$, how can we characterise the limit \overline{u} ?
- Is there a **rate** of convergence in terms of ε ?
- What is the interplay with the rate of convergence and the chosen advective field?

THIS TALK IS DERIVED FROM

[Ref.] T.HOLDING, H.H, J.RAUCH, SIAM J. Math. Anal., Vol 49, No 1, pp. 222-271 (2017).
[Ref.] T.HOLDING, H.H, J.RAUCH, in preparation, (2018).

Access to both the arXiv and published versions on my webpage:

http://hutridurga.wordpress.com

SCIENTIFIC COLLABORATORS

Joint work with T. Holding (Imperial), J. Rauch (Michigan)

Harsha HUTRIDURGA (Imperial)

SOME TOPICS IN PASSIVE TRANSPOL

19-June-2018 Durham

ORTHOGONAL DECOMPOSITION

 \clubsuit Consider the **null space** and the **range space** of **b** $\cdot \nabla$

$$\mathcal{N}_{\mathbf{b}} := \left\{ v \in \mathrm{L}^{2}(\Omega) \text{ s.t. } \operatorname{div}(\mathbf{b}v) = 0 \text{ in the sense of distributions} \right\}.$$
$$\mathcal{W}_{\mathbf{b}} := \left\{ \mathbf{b} \cdot \nabla v \text{ for } v \in \mathrm{H}^{1}(\Omega) \right\} \subset \mathrm{L}^{2}(\Omega).$$

A Hilbert's theorem yields orthogonal decomposition

$$\mathrm{L}^2(\Omega) = \mathcal{N}_{\mathbf{b}} \oplus \overline{\mathcal{W}_{\mathbf{b}}}$$

i.e., for any $v \in L^2(\Omega)$, there exists a **unique decomposition**

$$v = v_n + v_r$$

such that $v_n \in \mathcal{N}_{\mathbf{b}}$ and $v_r \in \mathcal{N}_{\mathbf{b}}^{\perp} = \overline{\mathcal{W}_{\mathbf{b}}}$

A Projection on to $\mathcal{N}_{\mathbf{b}}$ denoted $\mathcal{P} : L^2(\Omega) \mapsto \mathcal{N}_{\mathbf{b}}$

SOME WELL-KNOWN FIELDS

A rotation in two dimensions

$$\mathbf{b}(x_1, x_2) = \begin{pmatrix} -x_2\\ x_1 \end{pmatrix}$$

$$\mathbf{\clubsuit} \ x_1^2 + x_2^2 \in \mathcal{N}_{\mathbf{b}}$$

A two dimensional cellular flow

$$\mathbf{b}(x_1, x_2) = \begin{pmatrix} -\sin(x_1)\cos(x_2) \\ \cos(x_1)\sin(x_2) \end{pmatrix}$$

$$\sin(x_1)\sin(x_2) \in \mathcal{N}_{\mathbf{b}}$$

PROJECTION MAP $\mathcal{P}: L^2(\Omega) \mapsto \mathcal{N}_{\mathbf{b}}$

♣ For any $v \in L^2(\Omega)$, the projection $\mathcal{P}v$ can be **computed** as $\|v - \mathcal{P}v\|_{L^2(\Omega)} = \min_{g \in \mathcal{N}_{\mathbf{b}}} \|v - g\|_{L^2(\Omega)}$

More useful way to interpret the projection map *P* is due to von Neumann's ergodic theorem:

For any $v \in L^2(\Omega)$,

$$\mathcal{P}v(x) := \lim_{\ell \to \infty} \frac{1}{2\ell} \int_{-\ell}^{\ell} v\left(\Phi_{\tau}(x)\right) \, \mathrm{d}\tau$$

with the **flow** $\Phi_{\tau}(x) : \mathbb{R} \times \Omega \to \Omega$ defined as

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}\tau} \Phi_{\tau}(x) &= \mathbf{b} \left(\Phi_{\tau}(x) \right) \\ \Phi_{0}(x) &= x \end{cases}$$

Theorem (HOLDING, H, RAUCH (2018))

Let $u^{\varepsilon}(t,x)$ be the solution to the initial-boundary value problem. Then

$$u^{\varepsilon} \rightharpoonup \overline{u}$$
 weakly in L^2

with $\overline{u}(t,x)$ being the unique solution to

$$\partial_t \overline{u} - \Delta \overline{u} = g \in \mathcal{N}_{\mathbf{b}}^{\perp}$$
$$\overline{u}(t, \cdot) \in \mathcal{N}_{\mathbf{b}}$$
$$\overline{u}(0, \cdot) = \mathcal{P}u^{\mathrm{in}}(\cdot)$$
$$\nabla \overline{u}(t, x) \cdot \mathbf{n}(x) = 0 \qquad on \ \mathbb{R}_+ \times \partial \Omega.$$

The condition $\overline{u}(t, \cdot) \in \mathcal{N}_{\mathbf{b}}$ is treated as a **constraint**.

- The source $g(t, \cdot) \in \mathcal{N}_{\mathbf{b}}^{\perp}$ is the associated **Lagrange multiplier**.
- **\stackrel{\bullet}{\bullet}** The initial datum has got **projected** on to the null space $\mathcal{N}_{\mathbf{b}}$.

ESSENTIAL IDEAS

$$\partial_t u^\varepsilon + \frac{1}{\varepsilon} \mathbf{b} \cdot \nabla u^\varepsilon - \Delta u^\varepsilon = 0$$

$$\begin{split} &\clubsuit \text{ By L}^2\text{-weak convergence, we mean that for any } \psi(t,x) \in \mathcal{L}^2, \\ &\lim_{\varepsilon \to 0} \iint u^{\varepsilon}(t,x)\psi(t,x) \,\mathrm{d}x \,\mathrm{d}t = \iint \overline{u}(t,x)\psi(t,x) \,\mathrm{d}x \,\mathrm{d}t \end{split}$$

For a weak convergence, we cannot give a rate of convergenceLimit evolution with the constraint should be interpreted as

solving heat equation on the subspace $\mathcal{N}_{\mathbf{b}}$.

Can we improve it to strong convergence (then we explore the rate)

$$\lim_{\varepsilon \to 0} \|u^{\varepsilon} - \overline{u}\|_{\mathcal{L}^2} = 0.$$

Are there advective fields b(x) which result in strong convergence?
One possible obstacle for such a result is

$$u^{\varepsilon}(0,x) = u^{\mathrm{in}}(x); \qquad \overline{u}(0,x) = \mathcal{P}u^{\mathrm{in}}(x).$$

STRATEGY

🐥 WORK IN A MOVING FRAME OF REFERENCE

- ▶ Rather than studying $u^{\varepsilon}(t, x)$ in a **fixed frame**,
- we study u^{ε} taken along a **moving frame**.
- **Dynamics** of the moving frame dictated by the field $\mathbf{b}(x)$.

MEASURE PRESERVING FLOW

IN MOVING FRAME OF REFERENCE

 \clubsuit Rather than studying $u^{\varepsilon}(t,x)$ we study the family

 $u^{\varepsilon}\left(t,\Phi_{t/\varepsilon}(x)\right)$

 \clubsuit Flow is evaluated at $\frac{t}{\varepsilon}$

 $\qquad \qquad \textbf{We introduce a fast time variable } \tau := \frac{t}{\varepsilon}$

$$t = \mathcal{O}(\varepsilon) \implies \tau = \mathcal{O}(1).$$

& For any $\tau \in \mathbb{R}$, the map $x \mapsto \Phi_{\tau}(x)$ defines a **change-of-variable**

Associated Jacobian matrix

$$J(\tau, x) = \begin{bmatrix} \frac{\partial \Phi_{\tau}^{1}}{\partial x_{1}} & \cdots & \frac{\partial \Phi_{\tau}^{1}}{\partial x_{d}} \\ \vdots & & \vdots \\ \frac{\partial \Phi_{\tau}^{d}}{\partial x_{1}} & \cdots & \frac{\partial \Phi_{\tau}^{d}}{\partial x_{d}} \end{bmatrix} = \left(\frac{\partial \Phi_{\tau}^{i}}{\partial x_{j}}\right)_{i,j=1}^{d}$$

 $\mathbf{b}(x) \text{ incompressible } \Longrightarrow \text{ flow } \Phi_{\tau}(x) \text{ is volume preserving,}$ $\text{ i.e., } \det \left(J(\tau, x) \right) = 1 \qquad \text{ for all } \tau \in \mathbb{R}.$

Theorem (HOLDING, H, RAUCH (2017))

Let $u^{\varepsilon}(t, x)$ be the solution to the initial-boundary value problem. Suppose Jacobian matrix $J(\cdot, x) \in A$, an algebra with mean value. Then for each t > 0,

$$\lim_{\varepsilon \to 0} \left\| u^{\varepsilon}(t, \cdot) - u_0 \left(t, \Phi_{-t/\varepsilon}(\cdot) \right) \right\|_{\mathcal{L}^2(\Omega)} = 0$$

where $u_0(t, x)$ solves a diffusion equation

$$\partial_t u_0 = \nabla_X \cdot \left(\mathfrak{D}(X) \nabla_X u_0 \right); \qquad u_0(0, X) = u^{\mathrm{in}}(X)$$

with the diffusion matrix given by

$$\mathfrak{D}(x) = \lim_{\ell \to \infty} \frac{1}{2\ell} \int_{-\ell}^{+\ell} J(\tau, x)^{\top} J(\tau, x) \,\mathrm{d}\tau.$$

Harsha HUTRIDURGA (Imperial) SOME TOPIC

RECAST THE ADVECTION-DIFFUSION EQUATION ALONG THE FLOW

& Computing the time derivative

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[u^{\varepsilon} \left(t, \Phi_{t/\varepsilon}(x) \right) \right] = \partial_t u^{\varepsilon} \left(t, \Phi_{t/\varepsilon}(x) \right) + \frac{1}{\varepsilon} \frac{\mathrm{d}}{\mathrm{d}t} \Phi_{t/\varepsilon}(x) \cdot \nabla_X u^{\varepsilon} \left(t, \Phi_{t/\varepsilon}(x) \right) = \partial_t u^{\varepsilon} \left(t, \Phi_{t/\varepsilon}(x) \right) + \frac{1}{\varepsilon} \mathbf{b} \left(\Phi_{t/\varepsilon}(x) \right) \cdot \nabla_X u^{\varepsilon} \left(t, \Phi_{t/\varepsilon}(x) \right)$$

- **&** RHS is the advection term taken along the flow $\Phi_{t/\varepsilon}(x)$.
- x denotes the Lagrangian coordinate.
- Somputing the spatial derivative

$$\nabla \Big[u^{\varepsilon} \left(t, \Phi_{t/\varepsilon}(x) \right) \Big] = {}^{\top}\!J \left(\frac{t}{\varepsilon}, x \right) \nabla_{x} u^{\varepsilon} \left(t, \Phi_{t/\varepsilon}(x) \right)$$

where $\overline{}$ denotes transpose.

A Note the **dependance** of Jacobian on the **fast time variable**.

RECAST THE ADVECTION-DIFFUSION EQUATION ALONG THE FLOW

 \clubsuit Need to compute the Laplacian term along the flow $\Phi_{t/\varepsilon}(x)$. Consider the associated energy

$$\int_{\Omega} \langle \nabla u^{\varepsilon}(t,x), \nabla u^{\varepsilon}(t,x) \rangle \, \mathrm{d}x$$

A Perform the change of variables $x \mapsto \Phi_{t/\varepsilon}(x)$ inside the integral

$$\int_{\Omega} \left\langle {}^{\mathsf{T}}J\left(\frac{t}{\varepsilon},x\right) \nabla_{X} u^{\varepsilon}\left(t,\Phi_{t/\varepsilon}(x)\right), {}^{\mathsf{T}}J\left(\frac{t}{\varepsilon},x\right) \nabla_{X} u^{\varepsilon}\left(t,\Phi_{t/\varepsilon}(x)\right) \right\rangle \underbrace{\frac{\mathrm{d}x}{\left|\det(J)\right|}}_{=1}$$

A Hence the Laplacian along the flow $\Phi_{t/\varepsilon}(x)$ becomes

$$abla_X \cdot \left(J\left(rac{t}{arepsilon},x
ight)^{ op}J\left(rac{t}{arepsilon},x
ight)
abla_X u^arepsilon\left(t,\Phi_{t/arepsilon}(x)
ight)
ight)$$

(《글》 《글》 (글

EQUIVALENCE

 \clubsuit We have seen that $u^{\varepsilon}(t,x)$ solves

$$\partial_t u^{\varepsilon} + \frac{1}{\varepsilon} \mathbf{b} \cdot \nabla u^{\varepsilon} - \Delta u^{\varepsilon} = 0$$

if and only if $u^{\varepsilon}(t, \Phi_{t/\varepsilon}(x))$ solves

$$\partial_t u^{\varepsilon} - \nabla_X \cdot \left(J\left(\frac{t}{\varepsilon}, x\right) {}^{\mathsf{T}}\!J\left(\frac{t}{\varepsilon}, x\right) \nabla_X u^{\varepsilon} \right) = 0$$

 \clubsuit Pass to the limit as $\varepsilon \to 0$ in the weak formulation.

- $\mathbf{k} \nabla_X u^{\varepsilon}$ weakly converges in \mathbf{L}^2
- \clubsuit If the family $J^{\top}J\left(\frac{t}{\varepsilon},x\right)$ strongly converges, we are good because

$$f^{\varepsilon} \to f_0, \quad h^{\varepsilon} \to h_0 \implies f^{\varepsilon} h^{\varepsilon} \to f_0 h_0 \quad \text{ in } \mathcal{D}'$$

ILLUSTRATION OF ESSENTIAL DIFFICULTY

***** Take $f_n(t) = 2 + \sin(2n\pi t)$ over $[-\pi, \pi]$ with *n* being a parameter.

f_n cannot converge in almost any point.

Harsha HUTRIDURGA	(Imperial)	
-------------------	------------	--

MEAN VALUE (DILATION MAP)

Lemma

Suppose $f \in L^{\infty}(\mathbb{R})$. Define the dilated sequence

$$f^{\varepsilon}(t) := f\left(\frac{t}{\varepsilon}\right).$$

If $f^{\varepsilon} \rightharpoonup M(f)$ weakly $*$ in $L^{\infty}(\mathbb{R})$ as $\varepsilon \to 0$

where M(f) is a finite constant. Then, the limit is characterised as

$$M(f) = \lim_{\ell \to \infty} \frac{1}{2\ell} \int_{-\ell}^{\ell} f(\tau) \,\mathrm{d}\tau.$$

♣ By $h^{\varepsilon} \rightharpoonup h_0$ weakly * in $L^{\infty}(\mathbb{R})$, we mean

$$\lim_{\varepsilon \to 0} \int_{\mathbb{R}} h^{\varepsilon}(t) \psi(t) \, \mathrm{d}t = \int_{\mathbb{R}} h_0(t) \psi(t) \, \mathrm{d}t \quad \forall \psi \in \mathrm{L}^1.$$

Harsha HUTRIDURGA (Imperial)

19-June-2018 Durham

rham 22 / 46

PRODUCT OF TWO WEAKLY CONVERGING SEQUENCES

$$\sin\left(\frac{2\pi t}{\varepsilon}\right) \to 0;$$
 But $\int_0^1 \sin^2\left(\frac{2\pi t}{\varepsilon}\right) dt \to \frac{1}{2}$

QUINTESSENTIAL TOUGH QUESTION IN ANALYSIS

Passing to the limit in product of weakly converging sequencesThis is the question of interest in

Homogenization theory of differential equations.

 \clubsuit A typical problem in homogenization is to study

$$v^{\varepsilon}(x) \in \mathrm{H}^{1}_{0}(\Omega)$$
$$-\nabla \cdot \left(\mathfrak{a}\left(\frac{x}{\varepsilon}\right) \nabla v^{\varepsilon}\right) = g$$

in the $\varepsilon \ll 1$ regime.

♣ Usually we make some structural assumption on the coefficient \mathfrak{a} ♣ Homogenization motivates some structural assumption on $J(\cdot, x)$

CHOICE OF SPACE FOR JACOBIAN MATRICES

Notation: $\mathcal{B}(\mathbb{R})$ - space of bounded continuous functions.

Definition (Algebra with mean value)

 \mathcal{A} be a Banach subalgebra of $\mathcal{B}(\mathbb{R})$ with following properties:

- \clubsuit *A* contains the **constants**.
- ♣ \mathcal{A} is translation invariant, *i.e.* $f(\cdot a) \in \mathcal{A}$ whenever $f \in \mathcal{A}$.
- $Any f \in \mathcal{A}$ possesses a mean value in the following sense

$$f\left(\frac{\cdot}{\varepsilon}\right) \rightharpoonup M(f) \quad in \ \mathcal{L}^{\infty}(\mathbb{R})\text{-}weak^* \ as \ \varepsilon \to 0.$$

We have already seen that

$$M(f) = \lim_{\ell \to \infty} \frac{1}{2\ell} \int_{-\ell}^{\ell} f(\tau) \,\mathrm{d}\tau.$$

 [Ref.]
 V.V.JIKOV, E.V.KRIVENKO, Matem. Zametki (1983).

 [Ref.]
 V.V.JIKOV, S.M.KOZLOV, O.A.OLEINIK, Springer-Verlag (1994).

 Harsha HUTRIDURGA (Imperial)
 SOME TOPICS IN PASSIVE TRANSPORT

 19-June-2018 Durham
 24 / 46

SOME EXAMPLES OF ALGEBRA W.M.V.

Example (Periodic functions)

 $\mathcal{A} = \mathcal{C}_{per}$ be space of continuous functions **periodic** with period 1.

$$M(u) = \int_{0}^{1} u(\tau) \,\mathrm{d}\tau.$$

Example (Functions that converge at infinity)

 \mathcal{A} be space of continuous functions that converge to a limit at infinity

$$M(u) = \lim_{|\tau| \to \infty} u(\tau).$$

(本間) (王) (王) (王)

SOME EXAMPLES OF ALGEBRA W.M.V.

Example (Almost-periodic functions)

\mathbf{F} T(\mathbb{R}) be the set of all trigonometric polynomials, i.e. all u(t) that are finite linear combinations of functions in the set

 $\Big\{\cos(kt),\sin(kt):k\in\mathbb{R}\Big\}.$

The space of almost-periodic functions in the sense of **Bohr** is the closure of $T(\mathbb{R})$ in the supremum norm,

i.e., given a $\delta > 0$ and an almost-periodic function u(t), there exists a $g(t) \in \mathsf{T}(R)$ s.t.

$$\|u(\cdot) - g(\cdot)\|_{\mathcal{L}^{\infty}} < \delta.$$

TYPICAL EXAMPLE OF AN ALMOST-PERIODIC FUNCTION

$$\sin(2\pi t) + \sin(2\sqrt{2}\pi t)$$

Harsha HUTRIDURGA (Imperial) SOME TOPICS IN PASSIVE TRANSPORT 19-June-2018 Durham

27 / 46

æ

イロト イヨト イヨト イヨト

ASYMPTOTIC ANALYSIS STRATEGY

 \clubsuit Fix an arbitrary algebra w.m.v. $\mathcal{A}.$

& Take $\mathbf{b}(x)$ such that Jacobian matrix $J(\cdot, x) \in \mathcal{A}$, i.e., in particular

 $\sup_{\tau\in\mathbb{R}}|J(\tau,x)|<\infty$

A NEW NOTION OF WEAK CONVERGENCE

Definition (Σ -convergence along flow(HHR-2017))

A family $\{u^{\varepsilon}\} \subset L^2((0,\ell) \times \Omega)$ is said to Σ -converge along the flow Φ_{τ} to a limit $u_0(t, x, s) \in L^2((0,\ell) \times \Omega \times \Delta(\mathcal{A}))$ if, for any smooth test function $\psi(t, x, \cdot) \in \mathcal{A}$, we have

$$\begin{split} \lim_{\varepsilon \to 0} \iint_{(0,\ell) \times \Omega} u^{\varepsilon}(t,x) \psi\Big(t, \Phi_{-t/\varepsilon}(x), \frac{t}{\varepsilon}\Big) \, \mathrm{d}x \, \mathrm{d}t \\ &= \iiint_{(0,\ell) \times \Omega \times \Delta(\mathcal{A})} u_0(t,x,s) \widehat{\psi}(t,x,s) \, \mathrm{d}\beta(s) \, \mathrm{d}x \, \mathrm{d}t. \end{split}$$

EXAMPLES OF ADVECTIVE FIELDS WITH BOUNDED JACOBIAN

Example (Constant drift)

$$\mathbf{b}(x) = \overline{\mathbf{b}} \in \mathbb{R}^d.$$

Jacobian $J(\cdot)$ identity for all times.

Example (Asymptotically constant drift)

$$\mathbf{b}(x) = \begin{cases} \mathbf{b}^* & \text{when } x_1 < -a, \\ \mathbf{c}(x) & \text{when } x_1 \in [-a, a], \\ \mathbf{b}^{**} & \text{when } x_1 > a, \end{cases}$$

 $a > 0, \mathbf{e}_1 \cdot \mathbf{b}^*, \mathbf{e}_1 \cdot \mathbf{b}^{**} > 0$

♣ c(x) chosen to make b continuously differentiable.
♣ Any integral curve spends only finite time T in {x₁ ∈ [-a, a]}.

Harsha HUTRIDURGA (Imperial)

OME TOPICS IN PASSIVE TRANSPORT

19-June-2018 Durham

EXAMPLES OF ADVECTIVE FIELDS WITH BOUNDED JACOBIAN

Example (Euclidean motions)

$$\mathbf{b}(x) = \mathbf{A}x + \overline{\mathbf{b}}$$
 with $\mathbf{A} = -^{\top}\mathbf{A}$ and $\overline{\mathbf{b}} \in \mathbb{R}^d$.

Associated flow

$$\frac{\mathrm{d}}{\mathrm{d}\tau}\Phi_{\tau}(x) = \mathbf{A}\Phi_{\tau}(x) + \bar{\mathbf{b}}; \qquad \Phi_0(x) = x.$$

♣ Jacobian $J(\cdot, x)$ is an orthogonal matrix.

 \clubsuit Jacobian matrix has no growth in τ .

Ŧ

ROTATION INSIDE A BALL

Example

Let $\Omega \subset \mathbb{R}^2$ and $\Omega := B(0; 1)$. Advective field is a rigid rotation

$$\mathbf{b}(x_1, x_2) = \begin{pmatrix} -x_2\\ x_1 \end{pmatrix}$$

Associated flow

$$\Phi_{\tau}^{1}(x_{1}, x_{2}) = -x_{2} \sin \tau + x_{1} \cos \tau$$
$$\Phi_{\tau}^{2}(x_{1}, x_{2}) = x_{1} \sin \tau + x_{2} \cos \tau$$

🜲 Jacobian matrix

$$J(\tau, x_1, x_2) = \begin{bmatrix} \cos \tau & -\sin \tau \\ \sin \tau & \cos \tau \end{bmatrix}$$

A algebra w.m.v.
$$\mathcal{A} = \mathcal{C}_{\text{per}}$$
.
Note that $J^{\top}J = \text{Id}$.
Harsha HURPHNIR(A) (Imperial)

STORY SO FAR

$$\begin{split} &\clubsuit \text{ For any incompressible field } \mathbf{b}(x), \text{ family } u^{\varepsilon}(t,x) \text{ converges weakly} \\ &\lim_{\varepsilon \to 0} \iint_{(0,\ell) \times \Omega} u^{\varepsilon}(t,x) \psi(t,x) \, \mathrm{d}x \, \mathrm{d}t = \iint_{(0,\ell) \times \Omega} \overline{u}(t,x) \psi(t,x) \, \mathrm{d}x \, \mathrm{d}t \quad \forall \psi \in \mathbf{L}^2 \end{split}$$

with \overline{u} solves an evolution equation with constraint $\overline{u}(t, \cdot) \in \mathcal{N}_{\mathbf{b}}$ For any field $\mathbf{b}(x)$ such that $J(\cdot, x) \in \mathcal{A}$, a certain algebra w.m.v. Then, for any $t \in (0, \ell)$ we have

$$\lim_{\varepsilon \to 0} \|w^{\varepsilon}(t, x) - u_0(t, x)\|_{\mathrm{L}^2(\Omega)} = 0$$

where $w^{\varepsilon}(t,x) := u^{\varepsilon}(t,\Phi_{t/\varepsilon}(x))$ and

 u_0 solves a diffusion equation with diffusivity \mathfrak{D} .

There is no contradiction.

The operative phrase being moving frame.

ADVECTIVE FIELDS WITH UNBOUNDED JACOBIANS

📥 Two dimensional shear flow

 $\mathbf{b}(x) = \begin{pmatrix} a(x_2) \\ 0 \end{pmatrix}$

Measure preserving flow

$$\Phi_{\tau}(x_1, x_2) = \begin{pmatrix} x_1 + a(x_2)\tau \\ x_2 \end{pmatrix}$$

🐣 Jacobian matrix

$$J(\tau, x_1, x_2) = \begin{bmatrix} 1 & a'(x_2)\tau \\ 0 & 1 \end{bmatrix}$$

 \clubsuit Not uniformly bounded in τ main difficulty: $M(J) \not< \infty$.

& Lagrangian stretching.

Harsha HUTRIDURGA (Imperial)

18 Durham

Compute
$$J(\tau, x)^{\top} J(\tau, x)$$

$$= \begin{bmatrix} 1 & a'(x_2)\tau \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ a'(x_2)\tau & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 + |a'(x_2)|^2 \tau^2 & a'(x_2)\tau \\ a'(x_2)\tau & 1 \end{bmatrix}$$

STRATEGY TO HANDLE GROWING JACOBIANS

& Find a weight function $\omega(\tau)$ such that

 $\omega^{2}(\tau)J(\tau,x)^{\top}J(\tau,x)$ has a mean value.

 $\clubsuit \ {\rm Take} \ \omega(\tau) = \left(1+\tau^2\right)^{-\frac{1}{2}},$ then

$$\omega^{2}(\tau)J(\tau,x)^{\top}J(\tau,x) = \begin{bmatrix} \frac{1+|a'(x_{2})|^{2}\tau^{2}}{1+\tau^{2}} & \frac{a'(x_{2})\tau}{1+\tau^{2}} \\ \frac{a'(x_{2})\tau}{1+\tau^{2}} & \frac{1}{1+\tau^{2}} \end{bmatrix}$$

🐥 Mean value does exist

$$\lim_{\ell \to \infty} \frac{1}{2\ell} \int_{-\ell}^{\ell} \omega^2(\tau) J(\tau, x)^{\top} J(\tau, x) \, \mathrm{d}\tau = \begin{bmatrix} |a'(x_2)|^2 & 0\\ 0 & 0 \end{bmatrix}$$

Note that the resulting limit matrix is not of full rank.

INTRODUCING WEIGHT FUNCTION IN THE EVOLUTION

 \clubsuit We saw earlier that $u^{\varepsilon}(t, \Phi_{t/\varepsilon}(x))$ solves

Definition (Initial layer time variable)

Introduce a new time variable via the ode

$$\frac{\mathrm{d}T(t;\varepsilon)}{\mathrm{d}t} = \frac{1}{\omega^2(t/\varepsilon)} = 1 + \frac{t^2}{\varepsilon^2}; \qquad T(0,\varepsilon) = 0.$$

A Rather than looking at $u^{\varepsilon}(t, \Phi_{t/\varepsilon}(x))$, consider $u^{\varepsilon}(T(t; \varepsilon), \Phi_{t/\varepsilon}(x))$ which solves

$$\frac{1}{\omega^{2}(t/\varepsilon)}\partial_{T}u^{\varepsilon}\left(T(t;\varepsilon),\Phi_{t/\varepsilon}(x)\right)$$
$$=\nabla_{X}\cdot\left(J\left(\frac{t}{\varepsilon},x\right)^{\top}J\left(\frac{t}{\varepsilon},x\right)\nabla_{X}u^{\varepsilon}\left(T(t;\varepsilon),\Phi_{t/\varepsilon}(x)\right)\right)$$

INITIAL LAYER DYNAMICS

Section Explicit integration yields

$$T(t;\varepsilon) = t + \frac{t^3}{3\varepsilon^2}$$

 \clubsuit Note that for $\varepsilon \ll 1$, we have

$$t \sim \varepsilon^{\frac{2}{3}} T^{\frac{1}{3}}$$

♣ Pass to the limit as $\varepsilon \to 0$ (at least formally)

 $\partial_T u_0(T, X) = |a'(X_2)|^2 \partial^2_{X_1} u_0(T, X); \qquad u(0, X_1, X_2) = u^{\text{in}}(X_1, X_2)$

- Equation is degenerate diffusion occurs only in X₁ direction.
 Diffusion occurs along the direction of the flow.
- **Long time behaviour** of the solution $u_0(T, X_1, X_2)$: for each X_2

$$\lim_{T \to \infty} \int |u_0(T, X_1, X_2) - \mathcal{P}u^{\text{in}}(X_2)|^2 \, \mathrm{d}X_1 = 0.$$

Harsha HUTRIDURGA (Imperial)

AFTER THE INITIAL LAYER DYNAMICS

Initial layer dynamics has projected the initial datum on to $\mathcal{N}_{\mathbf{b}}$ Recall the evolution equation with constraint and projected datum

$$\partial_t \overline{u} - \Delta \overline{u} = g \in \mathcal{N}_{\mathbf{b}}^{\perp}$$
$$\overline{u}(t, \cdot) \in \mathcal{N}_{\mathbf{b}}$$
$$\overline{u}(0, \cdot) = \mathcal{P}u^{\mathrm{in}}(\cdot)$$

- \clubsuit In case of the **shear flow**: initial datum $\mathcal{P}u^{\text{in}}(x_2)$
- In case of the **shear flow**: constraint $\overline{u}(t, \cdot) \in \mathcal{N}_{\mathbf{b}} \implies \overline{u} \equiv \overline{u}(t, x_2)$
- \clubsuit The evolution equation then becomes

$$\partial_t \overline{u} - \partial_{x_2}^2 \overline{u} = g \in \mathcal{N}_\mathbf{b}^\perp$$

At times of $\mathcal{O}(1)$ – diffusion orthogonal to flow lines

HAMILTONIAN FLOWS

 \clubsuit For a stream function $H(x_1, x_2)$, consider

$$\mathbf{b}(x) = \nabla^{\perp} H = \begin{pmatrix} -\partial_{x_2} H \\ \partial_{x_1} H \end{pmatrix}$$

 $\clubsuit \ \nabla H$ and $\nabla^{\perp} H$ are orthogonal away from fixed points of H.

Lemma (HOLDING, H, RAUCH (2017)) Let x be a periodic point of the flow with period P(x). Then, $J(\tau, x)\nabla^{\perp}H(x) = (\nabla^{\perp}H)(\Phi_{-\tau}(x)),$ $J(\tau, x)\nabla H(x) = (\nabla^{\perp}H)(\Phi_{-\tau}(x))\left[\frac{(\nabla P(x) \cdot \nabla H(x))}{P(x)}\tau + f(\tau, x)\right] + \frac{|\nabla H(x)|^2}{|(\nabla H)(\Phi_{-\tau}(x))|^2}(\nabla H)(\Phi_{-\tau}(x)),$

where $f(\cdot, x)$ is a continuous P(x)-periodic function.

HAMILTONIAN FLOWS

Lenhanced relaxation along the flow in a time-boundary layer.

- At times of $\mathcal{O}(1)$ diffusion orthogonal to flow lines.
- A close link to results in Freidlin-Wentzell theory.

[Ref.] M.FREIDLIN, A.WENTZELL, Springer-Verlag (1998).

STRONG CONVERGENCE

Theorem (HOLDING, H, RAUCH (2018))

Let $\mathbf{b}(x) = \nabla^{\perp} H$ for some non-degenerate 2D Hamiltonian. Let $u^{\varepsilon}(t,x)$ be the solution family to the initial-boundary value problem. Let $\overline{u}(t,x)$ be the solution to the evolution equation with the constraint. Then we have

$$\lim_{\varepsilon \to 0} \|u^{\varepsilon} - \overline{u}\|_{\mathcal{L}^2((0,\ell) \times \Omega)} = 0.$$

SOME EXAMPLES OF ADVECTIVE FIELDS

Cellular flows
 (Taylor stream function)

 $H(x_1, x_2) = \sin(x_1)\sin(x_2)$

♣ Cat's eye flows

 $H(x_1, x_2) = \sin(x_1)\sin(x_2)$ $+ \delta \cos(x_1)\cos(x_2)$

SOME EXAMPLES OF ADVECTIVE FIELDS

ABC flows (ARNOLD-BELTRAMI-CHILDRESS)

$$\begin{pmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \mathbf{b}_3 \end{pmatrix} = \begin{pmatrix} A\sin(z) + C\cos(y) \\ B\sin(x) + A\cos(z) \\ C\sin(y) + B\cos(x) \end{pmatrix}$$

Take
$$(A, B, C) = (0, 1, 1)$$

$$\begin{pmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \mathbf{b}_3 \end{pmatrix} = \begin{pmatrix} \cos(y) \\ \sin(x) \\ \sin(y) + \cos(x) \end{pmatrix}$$
$$= \begin{pmatrix} \partial_y H \\ -\partial_x H \\ H(x, y) \end{pmatrix}$$

🜲 Hamiltonian

 $H(x,y) = \sin(y) + \cos(x)$

(국물) (국물) 문

HYPERBOLIC FLOWS (ANOSOV FLOWS)

$$\begin{pmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \end{pmatrix} = \begin{pmatrix} -\lambda x_1 \\ \lambda x_2 \end{pmatrix}$$
 i.e., with $H(x_1, x_2) = \lambda x_1 x_2$.

$$\left(\Phi_{\tau}^{1}, \Phi_{\tau}^{2}\right)(x_{1}, x_{2}) = \left(e^{-\lambda\tau}x_{1}, e^{\lambda\tau}x_{2}\right); \qquad J(\tau) = \left(\begin{array}{cc}e^{-\lambda\tau} & 0\\ 0 & e^{\lambda\tau}\end{array}\right)$$

イロト イヨト イヨト イヨト

æ

RESEARCH PROGRAM

& Considering **microscopic oscillations** in fluid fields

$$\mathbf{b}\left(x, \frac{x}{\varepsilon}, \frac{x}{\varepsilon^2}, \cdots, \frac{x}{\varepsilon^n}\right)$$

collaboration with G.PAVLIOTIS (IMPERIAL).

 \clubsuit Stochastic homogenization with random solenoidal fields

$$\mathbf{b}\left(\frac{x}{\varepsilon},\omega\right)$$

collaboration with S.NEUKAMM, M.SCHÄFFNER (DRESDEN).

 \clubsuit Numerical illustration of the time-boundary layer phenomenon

using adaptive wavelet galerkin method

collaboration with R.STEVENSON (AMSTERDAM).

High contrast in diffusivity collaboration with K.CHEREDNICHENKO (BATH), S.COOPER (DURHAM).

RELAXATION TO EQUILIBRIUM

Proposition (long time behaviour)

There exists a uniform constant $\gamma > 0$ such that

$$\left\| u^{\varepsilon}(t,\cdot) - \langle u^{\mathrm{in}} \rangle \right\|_{\mathrm{L}^{2}(\Omega)} \lesssim e^{-\gamma t}$$

where $\langle u^{\rm in}\rangle$ denotes the average

$$\langle u^{\mathrm{in}} \rangle := \frac{1}{|\Omega|} \int_{\Omega} u^{\mathrm{in}}(x) \,\mathrm{d}x$$

Multiply the evolution by $u^{\varepsilon}(t,x)$ and integrate over the spatial domain

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\int_{\Omega}|u^{\varepsilon}(t,x)|^{2}\,\mathrm{d}x + \frac{1}{2\varepsilon}\int_{\Omega}\mathbf{b}(x)\cdot\nabla|u^{\varepsilon}(t,x)|^{2}\,\mathrm{d}x + \int_{\Omega}|\nabla u^{\varepsilon}(t,x)|^{2}\,\mathrm{d}x = 0$$

i.e.,
$$\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} |u^{\varepsilon}(t,x)|^2 \,\mathrm{d}x = -\int_{\Omega} |\nabla u^{\varepsilon}(t,x)|^2 \,\mathrm{d}x.$$

Result follows by **Poincaré** inequality and **Grönwall's** inequality

Harsha HUTRIDURGA (Imperial)

SOME TOPICS IN PASSIVI

19-June-2018 Durham

Definition (Relaxation enhancing fields)

An incompressible field $\mathbf{b}(x)$ is called relaxation enhancing if for any $\delta > 0$, there exists $\overline{\varepsilon}(\delta) > 0$ such that $\forall \varepsilon$ with $\varepsilon < \overline{\varepsilon}(\delta)$ we have

$$\left\| u^{\varepsilon}(1,\cdot) - \langle u^{\mathrm{in}} \rangle \right\|_{\mathrm{L}^{2}(\Omega)} < \delta.$$

[Ref.] P.CONSTANTIN, A.KISELEV, L.RYZHIK, A.ZLATOS, Ann. Math. (2008).

Ref. H.BERESTYCKI, F.HAMEL, N.NADIRASHVILI, Comm. Pure Appl. Math. (2005).

Ref. B.FAYAD, Ergodic Theory Dynam. Systems (2002).

Ref. B.FRANKE, C.-R.HWANG, H.-M.PAI, S.-J.SHEU, Trans. Amer. Math. Soc. (2010).

Ref. J.BEDROSSIAN, M.COTI ZELATI, Arch. Rational Mech. Anal. (2017).

Theorem (Constantin et al. (2008))

An incompressible field $\mathbf{b}(x)$ is relaxation enhancing if and only if

 $\mathcal{N}_{\mathbf{b}} \cap \mathrm{H}^{1}(\Omega)$ has no non-trivial elements.

REFERENCES TO CONSULT:

- [Ref.] MCLAUGHLIN, PAPANICOLAOU, PIRONNEAU, SIAM J. Appl. Math. (1985).
- Ref. AVELLANEDA, MAJDA, J. Stat. Phy. (1992).
- Ref. FANNJIANG, PAPANICOLAOU, SIAM J. Appl. Math. (1994).
- Ref. FREIDLIN, WENTZELL, Springer-Verlag (1998).
- Ref. MAJDA, KRAMER, Physics Reports (1999).
- Ref. NGUETSENG, Z. Anal. Anw. (2003, 2004).
- Ref. MARUSIC-PALOKA, PIATNITSKI, J. London Math. Soc. (2005).
- Ref. BERESTYCKI, HAMEL, NADIRASHSHVILI, Comm. Pure Appl. Math. (2005).
- Ref. CONSTANTIN, KISELEV, RYZHIK, ZLATOS, Ann. Math. (2008).
- Ref. ZLATOS, Comm. Partial Differential Equations (2010).
- Ref. ISHII, SOUGANIDIS, J. Differential Equations (2012).
- Ref. HOLDING, HUTRIDURGA, RAUCH, SIAM J. Math. Anal., (2017).
- Ref. J.BEDROSSIAN, M.COTI ZELATI, Arch. Rational Mech. Anal. (2017).